#计算机科学#LightGBM是一个基于决策树算法的分布式梯度提升框架(GBT、GBDT、GBRT、GBM或MART),用于排名、分类和许多其他机器学习任务。
#计算机科学#A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computa...
翻译 - 快速,可扩展,高性能的“决策树加速梯度”库,用于对Python,R,Java,C ++进行排名,分类,回归和其他机器学习任务。支持在CPU和GPU上进行计算。
#计算机科学#🍊 📊 💡 Orange: Interactive data analysis
翻译 - 🍊 📊 💡 Orange:交互式数据分析
#计算机科学# Contains Solutions and Notes for the Machine Learning Specialization By Stanford University and Deeplearning.ai - Coursera (2022) by Prof. Andrew NG
Python code for common Machine Learning Algorithms
#计算机科学#Practice and tutorial-style notebooks covering wide variety of machine learning techniques
#计算机科学#A python library for decision tree visualization and model interpretation.
#计算机科学#Text Classification Algorithms: A Survey
翻译 - 文本分类算法:调查
#计算机科学#For extensive instructor led learning
#自然语言处理#General Assembly's 2015 Data Science course in Washington, DC
#计算机科学#A curated list of Best Artificial Intelligence Resources
#计算机科学#A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras.
翻译 - 一组用于Keras中的决策林模型的训练,服务和解释的最新算法。
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
#计算机科学#A library to train, evaluate, interpret, and productionize decision forest models such as Random Forest and Gradient Boosted Decision Trees.
#计算机科学#A Lightweight Decision Tree Framework supporting regular algorithms: ID3, C4.5, CART, CHAID and Regression Trees; some advanced techniques: Gradient Boosting, Random Forest and Adaboost w/categorical ...
#计算机科学#pure Go implementation of prediction part for GBRT (Gradient Boosting Regression Trees) models from popular frameworks
🔥🌟《Machine Learning 格物志》: ML + DL + RL basic codes and notes by sklearn, PyTorch, TensorFlow, Keras & the most important, from scratch!💪 This repository is ALL You Need!
#计算机科学#Compiler for LightGBM gradient-boosted trees, based on LLVM. Speeds up prediction by ≥10x.