#计算机科学#A game theoretic approach to explain the output of any machine learning model.
翻译 - 一种解释任何机器学习模型输出的博弈论方法。
#Awesome#A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning
翻译 - 精选的优秀开源库列表,用于部署,监视,版本化和扩展您的机器学习
#计算机科学#Fit interpretable models. Explain blackbox machine learning.
翻译 - 拟合可解释的模型。说明黑匣子机器学习。
#计算机科学#🔅 Shapash: User-friendly Explainability and Interpretability to Develop Reliable and Transparent Machine Learning Models
翻译 - Shapash使机器学习模型透明且每个人都可以理解
#计算机科学#[CVPR 2021] Official PyTorch implementation for Transformer Interpretability Beyond Attention Visualization, a novel method to visualize classifications by Transformer based networks.
#计算机科学#Responsible AI Toolbox is a suite of tools providing model and data exploration and assessment user interfaces and libraries that enable a better understanding of AI systems. These interfaces and libr...
#计算机科学#XAI - An eXplainability toolbox for machine learning
[ICCV 2021- Oral] Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-bas...
#时序数据库#Power Tools for AI Engineers With Deadlines
翻译 - H1st AI解决了工业AI的关键“冷启动”问题:对人类专业知识进行编码以增加数据的缺乏,同时构建向机器学习未来的平稳过渡。此问题已导致大多数工业AI项目失败。
#计算机科学#Visualization toolkit for neural networks in PyTorch! Demo -->
#计算机科学#Papers about explainability of GNNs
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
#计算机科学#Shapley Interactions and Shapley Values for Machine Learning
#计算机科学#Explainable AI framework for data scientists. Explain & debug any blackbox machine learning model with a single line of code. We are looking for co-authors to take this project forward. Reach out @ ms...
Official implementation of Score-CAM in PyTorch
CLIP Surgery for Better Explainability with Enhancement in Open-Vocabulary Tasks
#计算机科学#Neural network visualization toolkit for tf.keras
💡 Adversarial attacks on explanations and how to defend them
#计算机科学#CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms
#计算机科学#For calculating global feature importance using Shapley values.