#数据仓库#Label Studio is a multi-type data labeling and annotation tool with standardized output format
翻译 - Label Studio是具有标准化输出格式的多类型数据标签和注释工具
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows".
翻译 - 这是“Swin Transformer:Hierarchical Vision Transformer using Shifted Windows”的官方实现。
#计算机科学#Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
翻译 - 使用Python的图像多边形注释(多边形,矩形,圆形,直线,点和图像级标记注释)。
#计算机科学#PyTorch implementation of the U-Net for image semantic segmentation with high quality images
翻译 - U-Net的PyTorch实现,用于高质量图像的图像语义分割
PaddleSeg是基于飞桨PaddlePaddle开发的端到端图像分割开发套件,涵盖了高精度和轻量级等不同方向的大量高质量分割模型。通过模块化的设计,提供了配置化驱动和API调用两种应用方式,帮助开发者更便捷地完成从训练到部署的全流程图像分割应用。
MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 OpenMMLab 项目的一部分。
#大语言模型#[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4o. 接近GPT-4o表现的开源多模态对话模型
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset
翻译 - MIT ADE20K数据集的语义分割/场景解析的Pytorch实现
#计算机科学#Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.
Transfer Learning Library for Domain Adaptation, Task Adaptation, and Domain Generalization
翻译 - 转移学习图书馆
Semantic Segmentation Architectures Implemented in PyTorch
翻译 - PyTorch中实现的语义分割架构
The OCR approach is rephrased as Segmentation Transformer: https://arxiv.org/abs/1909.11065. This is an official implementation of semantic segmentation for HRNet. https://arxiv.org/abs/1908.07919
翻译 - 这是TPAMI论文“视觉识别的深度高分辨率表示学习”的语义分段的正式实现。 https://arxiv.org/abs/1908.07919
Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)
翻译 - PyTorch上的语义分割(包括FCN,PSPNet,Deeplabv3,Deeplabv3 +,DANet,DenseASPP,BiSeNet,EncNet,DUNet,ICNet,ENet,OCNet,CCNet,PSANet,CGNet,ESPNet,LEDNet,DFANet)
Official PyTorch implementation of SegFormer
翻译 - 《SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers》的官方实现
[CVPR 2023 Highlight] InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
#数据仓库#An extension of Open3D to address 3D Machine Learning tasks
翻译 - An extension of Open3D to address 3D Machine Learning tasks
#计算机科学#PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
翻译 - 完全卷积网络的PyTorch实现。 (可提供重现原始结果的训练代码。)
A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights
翻译 - EfficientDet的PyTorch表示忠实于原始的Google带有权重的表示
OneFormer: One Transformer to Rule Universal Image Segmentation, arxiv 2022 / CVPR 2023