#

yolov5

ultralytics/yolov5
https://static.github-zh.com/github_avatars/ultralytics?size=40

#IOS#YOLOv5 🚀 是在 COCO 数据集上预训练的一系列对象检测架构和模型,代表 Ultralytics 对未来视觉 AI 方法的开源研究,结合了经过数千小时研究和开发的经验教训和最佳实践。

Python 53.42 k
5 小时前
https://static.github-zh.com/github_avatars/PaddlePaddle?size=40

#人脸识别#PaddleDetection为基于飞桨PaddlePaddle的端到端目标检测套件,提供多种主流目标检测、实例分割、跟踪、关键点检测算法,配置化的网络模块组件、数据增强策略、损失函数等,推出多种服务器端和移动端工业级SOTA模型,并集成了模型压缩和跨平台高性能部署能力,帮助开发者更快更好完成端到端全开发流程。

Python 13.31 k
19 天前
ultralytics/yolov3
https://static.github-zh.com/github_avatars/ultralytics?size=40

#计算机科学#YOLOv3 in PyTorch > ONNX > CoreML > TFLite

翻译PyTorch中的YOLOv3> ONNX> CoreML> iOS

Python 10.37 k
5 小时前
https://static.github-zh.com/github_avatars/roboflow?size=40

#计算机科学#This repository offers a comprehensive collection of tutorials on state-of-the-art computer vision models and techniques. Explore everything from foundational architectures like ResNet to cutting-edge...

Jupyter Notebook 7.56 k
6 天前
https://static.github-zh.com/github_avatars/wang-xinyu?size=40

Implementation of popular deep learning networks with TensorRT network definition API

翻译使用TensorRT网络定义API实施流行的深度学习网络

C++ 7.3 k
4 天前
https://static.github-zh.com/github_avatars/xlite-dev?size=40

🛠 A lite C++ AI toolkit: 100+🎉 models (Stable-Diffusion, Face-Fusion, YOLO series, Det, Seg, Matting) with MNN, ORT and TRT.

翻译🍅🍅A lite C++ 工具包,包含具有 ONNXRuntime、NCNN、MNN 和 TNN 的出色 AI 模型。 YOLOX、YOLOP、YOLOv5、YOLOR、NanoDet、YOLOX、SCRFD、YOLOX。 MNN、NCNN、TNN、ONNXRuntime、CPU/GPU。

C++ 4.02 k
5 天前
https://static.github-zh.com/github_avatars/TingsongYu?size=40

#大语言模型#《Pytorch实用教程》(第二版)无论是零基础入门,还是CV、NLP、LLM项目应用,或是进阶工程化部署落地,在这里都有。相信在本书的帮助下,读者将能够轻松掌握 PyTorch 的使用,成为一名优秀的深度学习工程师。

Jupyter Notebook 3.48 k
3 个月前
https://static.github-zh.com/github_avatars/open-mmlab?size=40

#计算机科学#OpenMMLab YOLO series toolbox and benchmark. Implemented RTMDet, RTMDet-Rotated,YOLOv5, YOLOv6, YOLOv7, YOLOv8,YOLOX, PPYOLOE, etc.

Python 3.16 k
9 个月前
https://static.github-zh.com/github_avatars/PaddlePaddle?size=40

#安卓#⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end ...

C++ 3.15 k
2 个月前
https://static.github-zh.com/github_avatars/tinyvision?size=40

#计算机科学#DAMO-YOLO: a fast and accurate object detection method with some new techs, including NAS backbones, efficient RepGFPN, ZeroHead, AlignedOTA, and distillation enhancement.

Python 3.04 k
1 年前
https://static.github-zh.com/github_avatars/zjhellofss?size=40

#计算机科学#校招、秋招、春招、实习好项目!带你从零实现一个高性能的深度学习推理库,支持大模型 llama2 、Unet、Yolov5、Resnet等模型的推理。Implement a high-performance deep learning inference library step by step

C++ 2.86 k
6 个月前
https://static.github-zh.com/github_avatars/iscyy?size=40

#计算机科学#🔥🔥🔥 专注于YOLO11,YOLOv8、TYOLOv12、YOLOv10、RT-DETR、YOLOv7、YOLOv5改进模型,Support to improve backbone, neck, head, loss, IoU, NMS and other modules🚀

Python 2.68 k
9 天前
https://static.github-zh.com/github_avatars/PeterH0323?size=40

Base on YOLOv5 Head Person Helmet Detection on Construction Sites,基于目标检测工地安全帽和禁入危险区域识别系统,🚀😆附 YOLOv5 训练自己的数据集超详细教程🚀😆2021.3新增可视化界面❗❗

Python 2.38 k
1 年前
https://static.github-zh.com/github_avatars/ppogg?size=40

🍅🍅🍅YOLOv5-Lite: Evolved from yolov5 and the size of model is only 900+kb (int8) and 1.7M (fp16). Reach 15 FPS on the Raspberry Pi 4B~

翻译shufflev2-yolov5:更轻、更快、更容易部署。由yolov5进化而来,模型大小只有1.7M(int8)和3.3M(fp16)。当输入大小为320×320时,它可以在树莓派4B上达到10+ FPS~

C++ 2.36 k
10 个月前
https://static.github-zh.com/github_avatars/deepcam-cn?size=40

YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931) ECCV Workshops 2022)

Python 2.22 k
9 个月前
https://static.github-zh.com/github_avatars/hukaixuan19970627?size=40

yolov5 + csl_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测

Python 1.88 k
2 年前
https://static.github-zh.com/github_avatars/PaddlePaddle?size=40

PaddleSlim is an open-source library for deep model compression and architecture search.

翻译PaddleSlim是一个用于深度模型压缩和体系结构搜索的开源库。

Python 1.59 k
4 个月前
loading...
Website
Wikipedia