#计算机科学# XGBoost的全称是经过优化的分布式梯度提升库,旨在高效、灵活且可移植。提供Python、R、Java、Scala等库
#计算机科学#LightGBM是一个基于决策树算法的分布式梯度提升框架(GBT、GBDT、GBRT、GBM或MART),用于排名、分类和许多其他机器学习任务。
Probabilistic Gradient Boosting Machines
#计算机科学#H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Me...
翻译 - 适用于更智能应用的开源快速可扩展机器学习平台:深度学习,梯度提升和XGBoost,随机森林,广义线性建模(逻辑回归,弹性网),K均值,PCA,堆叠集成,自动机器学习(AutoML)等。
Experimental Gradient Boosting Machines in Python with numba.
#计算机科学#A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computa...
翻译 - 快速,可扩展,高性能的“决策树加速梯度”库,用于对Python,R,Java,C ++进行排名,分类,回归和其他机器学习任务。支持在CPU和GPU上进行计算。
Ytk-learn is a distributed machine learning library which implements most of popular machine learning algorithms(GBDT, GBRT, Mixture Logistic Regression, Gradient Boosting Soft Tree, Factorization Mac...
A self-generalizing gradient boosting machine which doesn't need hyperparameter optimization
An example project that predicts house prices for a Kaggle competition using a Gradient Boosted Machine.
Tiny Gradient Boosting Tree
Natural Gradient Boosting for Probabilistic Prediction
Parallel Gradient Boosting Decision Trees
A curated list of gradient boosting research papers with implementations.
Accelerated gradient and proximal boosting in Python
Hands-On Gradient Boosting with XGBoost and Scikit-learn Published by Packt
A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models.
Using Gradient Boosting Trees and Explainable ML for Commericial Building Benchmarking
Hybrid model of Gradient Boosting Trees and Logistic Regression (GBDT+LR) on Spark
Gradient Boosting Machine (XGBoost, CatBoost, RandomForest, Decision Tree, Scikit learn) based network intrusion detection method, on imbalanced CIC-IDS-2018 dataset
Detection of various leaf diseases using GLCM features and Gradient Boosting Classifier
pure Go implementation of prediction part for GBRT (Gradient Boosting Regression Trees) models from popular frameworks