Tensorflow implementation of DeepFM for CTR prediction.
CTR prediction using FM FFM and DeepFM
A PyTorch implementation of DeepFM for CTR prediction problem.
A simple DeepFM.
DeepFM for CTR prediction problem (pytorch 1.0)
LR, Wide&Deep, DCN, NFM, DeepFM, NFFM
4th Place Solution for Mercari Price Suggestion Competition on Kaggle using DeepFM variant.
A developing recommender system in tensorflow2. Algorithm: UserCF, ItemCF, LFM, SLIM, GMF, MLP, NeuMF, FM, DeepFM, MKR, RippleNet, KGCN and so on.
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM, xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)
LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。
练习下用pytorch来复现下经典的推荐系统模型, 如MF, FM, DeepConn, MMOE, PLE, DeepFM, NFM, DCN, AFM, AutoInt, ONN, FiBiNET, DCN-v2, AFN, DCAP等
在PyTorch上重构xDeepFM。为节约时间,略去了神经网络和逻辑斯蒂回归部分,二者如何实现可参考本人写的DeepFM:https://github.com/SukerZ/DeepFM-on-PyTorch